
General announcements

1.)



What’s left?
We’ve dealt so far with the rotational counterparts to kinematics, N2L, and 
energy. Now: momentum!
A refresher: 

– We know a net force accelerates a body. Similarly, a net torque 
angularly accelerates a body. 

– Translational momentum depends on mass and velocity (p = mv)
– A force applied for a certain duration of time can change momentum. 

This is called impulse (𝐹∆𝑡 = 𝑚∆𝑣)

Angular momentum is the rotational counterpart to momentum. A large 
angular momentum means it will take a relatively large torque applied over a 
given amount of time to bring a rotating body to rest. 
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Change your orientation, you change your motion . . . 
(courtesy of Yulia Lipnitskaya
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The Island Series:

4.)

You have been kidnapped by a crazed physics nerd and left on an island with 
twenty-four hours to solve the following problem.  Solve the problem and you 
get to leave.  Don’t solve the problem and you don’t.

The problem:  You are on a street walking a bicycle toward a curb.  You 
want to lift the bike by its seat up and over the curb without having the front tire 
flopping around as you do it.  Your task is to divine a maneuver that will insure 
the wheel stays straight.



Just before you get to the curb, 
accelerate the bike so the front wheel is 
rotating as fast as possible.  The front 
wheel’s large angular momentum vector,
directed along the wheel’s axle, will keep 
the wheel orientated as set.  That is, as long 
as there are no external torques acting, the 
wheel will keep its orientation just as a 
gyroscope keeps its.

Solution to Island Problem

5.)

angular 
momentum

v



Angular momentum
Translational motion:                                  Rotational motion:

Likewise, if all the torques acting on a group of particles (or just one) are 
zero or are internal to the system, then angular momentum is said to be 
conserved. 

momentum angular momentum

For momentum, if all the forces acting on a group of particles are zero or are 
internal to the system, momentum is said to be conserved.  
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There is a lot here.  To make life easier, we are going to go after these ideas 
in pieces.

7.)

Example 1: A point mass m moves with 
velocity v in a circular path of radius R.  
Determine its angular momentum using:

a.) Translational parameters:

b.) Rotational parameters:

Note: the direction of the angular momentum is perpendicular to the plane of 
the motion ( direction), as would be expected of a counterclockwise rotation.+k̂

Ipt  mass = mR2

ω = vR

   = R( ) mv( )sin90o

   = mvR

 
!
L = !r x !p

L = Iω

  = mR2( ) v
R

⎛
⎝⎜

⎞
⎠⎟

  = mvR

 
!
L  

!
ω

R m
v•

Note the direction of the cross product!



Angular momentum example (Ms
Dunham’s version)

Example:  A point mass m circles a fixed point at a distance R units out.  If its 
velocity is v, use both angular momentum relationships to determine the body’s 
angular momentum.

or

Shazam! It doesn’t matter which approach you use, you get the same value for 
the body’s angular momentum.
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Changing angular momentum
A few units ago, we started with Newton’s 2nd Law and did some 
rearranging to come up with the relationship

𝜏!"# =
∆𝐿
∆𝑡 𝜏∆𝑡 = ∆𝐿

∑𝐿! +∑𝜏"#$∆𝑡 = ∑𝐿%

So, for rotational motion:

From that, we got the Conservation of Momentum relationship:



Important note about L
What is different between the two conservation relationships is that for 
momentum, it is common to have an external forces acting over a time interval, 
whereas for angular momentum, it rarely happens that an external torque acts.  In 
other words, with no external torques acting on a system, the conservation of 
angular momentum relationship usually ends up looking like: 

One other thing: whereas rotational and translational kinetic energies can be put 
together in the same equation (both have units of Joules), angular momentum and 
translational momentum are NOT combinable! They have to be treated separately, 
like force and torque.  Another way to remember:

– Translational momentum p has units 𝑁 " 𝑠 or 𝑘𝑔 " 𝑚/𝑠
– Rotational momentum L has units 𝑁 " 𝑚 " 𝑠 or 𝑘𝑔 " 𝑚!/𝑠

L1∑ + τextΔt∑ = L2∑
0
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Example 4: An ice skater with arms out 
has an angular speed of      and a moment of 
inertia   .  She pulls her arms in.

a.) What happens to her moment of inertia 
as she pulls her arms in? I1 I2

ω1

II

(it decreases)

b.) What is her new angular momentum?
(no external torques, so it doesn’t change)

c.) What was her new angular speed?

There are no external torques acting on 
the woman, so conservation of angular 
momentum yields:

L1 + ΓextΔt = L2∑∑∑
 I1ω1   +       0       =  I2ω2

       ⇒        ω2 =  I1ω1

 I2

0

before after

. . . And as           , her angular velocity increases.I2 < I1



But             , so                and mechanical energy is NOT conserved.  This should 
not be a surprise.  When the moment of inertia diminishes and angular velocity 
gets proportionally LARGER due to conservation of angular momentum, KE must 
go UP as it is governed by velocity (remember,               ). 12.)

Example 4 (cont’) : An ice skater with arms out 
has an angular speed of      and a moment of 
inertia   .  She pulls her arms in.

d.) Is mechanical energy conserved during 
this action?  Justify and comment. I1 I2

ω1

II

Just by using your head, chemical energy in your muscles must be burned 
to force your arms inward, so you might expect that the mechanical energy 
in the system would not be conserved.  Looking at the math, though:

Eo =  1
2

I1 ω1( )2  for the initial mechanical energy

before after

E2 =  1
2

I2 ω2( )2

    = 1
2

I2
I1

I2

ω1
⎛
⎝⎜

⎞
⎠⎟

2

= 1
2

I2
I1

2

I2
2 ω1

2⎛
⎝⎜

⎞
⎠⎟
= 1

2
I1ω1

2⎛
⎝⎜

⎞
⎠⎟

I1

I2

⎛
⎝⎜

⎞
⎠⎟
= EO

I1

I2

⎛
⎝⎜

⎞
⎠⎟

I1
I2
>1 E2 > Eo

1
2Iω

2



Figure skater example (Ms. Dunham)
http://ffden-2.phys.uaf.edu/w

ebproj/211_fall_2014/A
riel_Ellison/A

riel_Ellison/A
ngular.htm

l

There are no external torques acting on the woman, so 
although her angular momentum and speed will change, 
her angular momentum will not.  Mathematically, this 
comes out to:

∑𝐿! + ∑ 𝜏"#$∆𝑡 = ∑ 𝐿%

𝐼&𝜔& + 0 = 𝐼'𝜔'
⇒ 𝜔' =

𝐼&
𝐼'
𝜔&

Note: her angular speed went up with moment of inertia going down so her 
angular momentum stays the same, BUT because angular speed governs energy 
(𝐾 = "

!
𝐼𝜔!),  the mechanical energy in the system goes UP.  (This is due to chemical 

energy burned in her body as she pulls her arms inward.)

Example:  An ice skater with arms out have an angular speed of 𝛚1 and a moment 
of inertia I1. She pulls her arms in so her moment of inertia diminishes to I2.  What 
happens to her angular speed?
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And for planetary motion, look at:
URL 
http://galileoandeinstein.phys.virginia.edu/
more_stuff/Applets/Kepler/kepler.html

Poly student . . . 

http://galileoandeinstein.phys.virginia.edu/more_stuff/Applets/Kepler/kepler.html


15.)

•
kid

kid
walk

walk

As they walk inward, each kid applies a force, hence torque, to the m.g.r., that 
changes the m.g.r.’s angular velocity.  As a Newton’s Third Law action/action 
pair, the m.g.r. applies a force, hence torque, to the kids changing their angular 
velocity.  As these are all internal impulses, conservation of angular momentum 
is applicable.

Example 5: Another standard problem is the 
merry-go-round problem.   A merry-go-round, assumed 
to be a disk, has mass M and radius R.  It also has two 
kids who push the m.g.r.’s outer edge by running along 
side of it to get it up to an angular speed of     .  The 
kids, each of which have a mass of      , then jump on 
and start to walk toward the center of the m.g.r.  When 
they get to within units from the center, they stop.  
What is their speed at that point?  

ω1

mk

R
3

Interestingly, there are TWO ways we can go here with the kids:
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treating the two kids as masses executing rotational motion:

                      L1                     + ΓextΔt =                   L2∑∑∑
2    Ikid,1    ω1 +        Imgr        ω1( )  +       0       = 2        Ikid,2      ω2 +       Imgr     ω2( )

  2 mkR
2( )ω1 +

1
2

MR2⎛
⎝⎜

⎞
⎠⎟ ω1

⎛
⎝⎜

⎞
⎠⎟

  +       0       = 2 mk
R
3

⎛
⎝⎜

⎞
⎠⎟

2⎛

⎝⎜
⎞

⎠⎟
ω2 +

1
2

MR2⎛
⎝⎜

⎞
⎠⎟ ω2

⎛

⎝
⎜

⎞

⎠
⎟  

              ⇒        ω2 =
 2mk + M

2
 2mk

9 + M
2
ω1 =

 18 4mk + M( )
 4mk + 9M

ω1

the kid’s velocities:

v = R
3

⎛
⎝⎜

⎞
⎠⎟ ω2 =

 18 4mk + M( )
 4mk + 9M( )

R
3

⎛
⎝⎜

⎞
⎠⎟ ω1

                    =
 6 4mk + M( )
 4mk + 9M( )Rω1

6



17.)

treating the kids as point masses moving with velocity “v”:

 

                      L1                     + ΓextΔt =                     L2∑∑∑
2    !r1x

!p1          +      Imgr     ω1( )   +       0       = 2        !r2x
!p2      +        Imgr        ω2( )

 2 mkv1R( )     + 1
2

MR2⎛
⎝⎜

⎞
⎠⎟ ω1

⎛
⎝⎜

⎞
⎠⎟

  +       0       = 2 mkv2
R
3

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟
+ 1

2
MR2⎛

⎝⎜
⎞
⎠⎟

v2

R
3( )

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

 

2 mk Rω1( )R( ) + 1
2

MR2⎛
⎝⎜

⎞
⎠⎟ ω1

⎛
⎝⎜

⎞
⎠⎟

 +       0       = 2 mkv2
R
3

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟
+ 1

2
MR2⎛

⎝⎜
⎞
⎠⎟

v2

R
3( )

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

            ⇒        v2 =
 2mk + M

2
 2mk

3 + 3M
2

Rω1=
 6 4mk + M( )
 4mk + 9M

Rω1

Same solution either way.  What’s important is the set-up, not all the nasty math.



MGR example – with a twist!
A child of mass m runs with velocity vi tangent to a stationary merry-go-round
and jumps onto it.  The merry-go-round’s mass is M, radius R and moment of 
inertia ½ MR2 . 

before jump after jump

mv

ω

MGR initially at rest

a.) Are there any torques acting on the system?  If so, where do they happen? 
Are they internal or external?
b.) Is momentum conserved in the system?
c.) Is energy conserved in the system?
d.) Is angular momentum conserved in the system?
e.) What is the final angular velocity of the merry go round?

18.)



MGR with a twist (con’t.)!
a.) Are there any torques acting on the system?  If so, where do they happen? Are 
they internal or external?

There is a torque provided by the kid on the MGR when she jumps on. 
However, the MGR exerts an equal torque back on the kid, so these are 
internal torques. 

No – there is an external forces providing an impulse during the collision 
due to the axle’s interaction with the ground

No – the kid is crashing into the mgr . . . it’s a perfectly inelastic collision

The torques are internal, so theory says yes, but there doesn’t seems to be 
any rotation and associated angular momentum before the collision, so this 
is confusing.  How might we reconcile these two seemingly disparate 
observation? 

b.) Is momentum conserved in the system?

c.) Is energy conserved in the system?

d.) Is angular momentum conserved in the system?

19.)



= mv(b) 

!
L = !r  x !p
    = r2 (mv)sinθ2
    = mv(r2 sinθ2 )

= mv b( ) 

!
L = !r  x !p
    = r1(mv)sinθ1
    = mv(r1 sinθ1)

20.)

This is important:  Objects moving in a straight line with constant speed 
HAVE angular momentum, and the angular momentum is CONSTANT!

This seemingly insane bit of amusement is actually grounded in intuitively sound 
reasoning.  To see how, consider the simplest motion possible, a mass moving with 
constant velocity parallel to the x-axis.  How does the angular momentum 
calculate out at several points in that case?

θ1
r1 sinθ1 = b

r1
θ1

θ2
r2 sinθ2 = b

θ2r2

Same angular momentum! But how can a body moving STRAIGHT have 
angular momentum?

mv mv

A little bit later . . . 



p⊥

Consider a body moving in circular motion.  Its angular momentum will equal:     

θ

 

L = !r  x !p
    = p⊥r

p⊥

pradialθ

 
!r

p = mvθwhere       is the body’s momentum.  This 
momentum will be perpendicular to the 
position vector and tangent to the path.  
Nobody would argue that this body’s 
motion didn’t have angular momentum, as 
its motion is circular!

p⊥

Now consider a particle moving parallel to the x-axis with momentum mv, as 
shown in the sketch.  

21.)

In other words, 
one of its components will be exactly like the momentum involved in the object 
that was executing a pure rotation, that had angular momentum.  Conclusion, 
this body, moving in a straight line, will also have angular momentum
(assuming its velocity vector’s line doesn’t go thru the reference point).   

 
!r  p⊥

It will have a momentum component that is radial and outward from the origin, 
and a tangential component (     ) that is perpendicular to the .  



Back to the MGR…
before jump after jump

mv

ω

MGR initially at rest

mvnew = m(Rω)

The kid’s initial momentum was mvi. 
After she jumps on, became mvnew = 
m(R𝛚).  This means we can write:

e.) what is the final angular velocity?

∑𝐿! + ∑ 𝜏"#$∆𝑡 = ∑ 𝐿%

𝑅 𝑚𝑣! 𝑠𝑖𝑛90 + 0 = 𝑅 𝑚𝑅𝜔% + 𝐼𝜔%

𝑅𝑚𝑣! = 𝑚𝑅'𝜔% +
1
2
𝑀𝑅'𝜔%

𝜔% =
𝑚𝑣!

(𝑚𝑅 + 1
2𝑀𝑅)

Alternately, you could say after the 
collision, we have one disk with total I = 
IMGR + Ikid as pt mass = ½ MR2 + mR2 so:

∑𝐿# + ∑𝜏$%&∆𝑡 = ∑𝐿'

𝑅 𝑚𝑣# 𝑠𝑖𝑛90 + 0 =
1
2
𝑀 +𝑚 𝑅!𝜔'

𝜔' =
𝑚𝑣#

(𝑚𝑅 + 12𝑀𝑅) 22.)



Angular momentum reminders
Angular momentum is the rotational version of momentum:

If there are no external torques in a system (only internal torques), angular 
momentum is conserved! 

– In almost every situation, this will be true, so:

Can you conserve angular momentum but not energy? Give an example to 
support your answer.

Yes: figure skater (brings arms in, I decreases so angular velocity increases; 
rotational energy increases due to burning chemical energy in her arms)

Yes: merry go round (people walked from outside to inside; net I decreased so 𝛚
increased; energy of system increased due to same reason as above)

à remember for this one, we had to consider the total I of the system      
before and after – the kids were point masses!
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Angular momentum: There are no external torques, so angular momentum, which 
is initially ZERO, is conserved. Since the ball hits the center of mass, the beam 
merely translates instead of rotating (no internal torque, either!)

Another example: ball and beam
So with this in mind, consider a stationary meter stick of 
mass M (Icm = (1/12) ML2) sitting on a frictionless table.  A 
puck of mass mp moving with velocity v0 hits the stick at 
its center of mass.  What is conserved during the collision? 
Energy:  As is the case with all collisions, 
energy is not conserved here unless you are told 
the collision is elastic, which it isn’t in this case.

Momentum:  There are no external forces, so 
momentum is conserved.  The math:

24.)

Energy:

Momentum:

Angular momentum:



Ball and beam v.2
Now, the same collision but with the puck hitting a 
distance y units from the stick’s center of mass.  What 
is conserved now?

Energy:  Still no!

Momentum:  Still yes, with:

Angular momentum:  Still yes, except there is

       L1  + ΓextΔt =        L2∑∑∑
⇒   mpvoy +       0     = −mpv1y + Istick,cmω

angular momentum about the stick’s center of mass 
due to the puck’s straight-line motion.  That angular 
momentum equation becomes:

Energy:

Momentum:

Angular momentum:

25.)



One important (and strange) point:
What’s unfortunate, at least from the perspective of 
problem solving, is that the velocity of the center of mass 
of the free stick is NOT related to the angular velocity 
about the stick’s center of mass by

That’s why you usually see this problem in 
the following alternate form:  The stick is pinned 
at its center of mass, and when the puck hits, it 
stops dead.  In that case:

v2 = rω
   = yω

Momentum is no longer conserved (an external force acts at the pin) but angular 
momentum is conserved with the final angular momentum being that of the stick only 
(the puck is not moving).  With that, the stick’s final angular velocity can be 
calculated using the conservation of angular momentum equation, or:

26.)



General information
Last rotational motion quiz is xxx on angular momentum

You will definitely see some version of the merry-go-round problem. Be able to:
• apply concepts of conservation of angular momentum for a MGR with things moving 

on its surface (e.g. kids moving from outside in or inside out, or jumping on); 
• Turn a translational momentum vector into a rotational momentum vector (r x p);
• Understand what would cause a change in angular momentum (impulse due to 

torque);
• Understand whether momentum, angular momentum and/or energy are conserved;

– There is also a good chance you will see some version of the meterstick/puck 
problem (today’s) – be able to tell whether energy, momentum, and angular 
momentum are conserved for either situation (pinned or not).

After the quiz, we’ll tie up some loose ends with angular momentum (fun examples 
- and The Wheel, pulsars, etc.) and start talking about the unit test + goalless 
problem for next week’s Block Day

– Goalless problem guidelines are posted, but we’ll talk more Friday and I’ll have a 
couple of practice ones for you

27.)
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This is the rotational analogue to the problem 
shown to the right: A mass m sitting at the top of a 
curved incline of radius R slides down the incline, 

Example 10: A mass m sits at the top of a 
curved, frictionless incline of radius R. It slides 
down the incline and executes a perfectly inelastic 
collision with the end of a pinned rod of mass 5m
and length d. The two rotate up to some angle    
before coming to rest.  If R = .4d, derive an 
expression for    .  You know:

θ

θ

m, d, R, g, and Icm,rod =
5

12
md2

 i

m

d θ

5m

m

executes a perfectly inelastic collision with a 5m mass, and proceeds up a ramp.  
How high up the ramp does it go?

So how would you do this problem?
(Energy up to the collision, momentum through the collision, energy after the collision!)
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 i

m

d θ

5m

How are the problems different as far as 
solving goes?  That is, why can’t we just use 
conservation of momentum when the two 
masses collide in the pinned beam problem?

To use conservation of momentum, we
need a system in which there are no external impulses.  The pin provides an 
external impulse (it keeps the rod from accelerating en-mass to the left through 
the collision), so conservation of momentum won’t work for this collision.  
There are no external torques acting about the pin, though, so conservation of 
angular momentum IS applicable.

m, d, R, g, and Icm,rod =
5

12
md2
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 i

m

To begin, the velocity     of the mass m just before the collision can be determine 
using conservation of energy:

KE1∑ + U1∑ + Wext∑ = KE2∑ + U2∑
     0    + mgR +     0    =  1

2
mv1

2 +    0

                ⇒   v1 = 2gR( )1
2   

v1

v1

Because there are no external torques acting about the pin, conservation of 
angular momentum is the key to the collision.  Taking a time interval through the 
collision, and summing the angular momenta about the pin, we can write:

 

L1,pin∑ + τextΔt∑ =     L2,pin∑
     L1,mass +      0     =  L2,mass + L2,rod   
    ⇒     !rx!p1  =  Imassω2 + Ipinω2

We need those angular momentum quantities.  

 i

m

5m

m, d, R, g, and Icm,rod =
5

12
md2
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To determine the angular momentum of the mass 
about the pin, we can go two ways.  We can either 
treat the mass as a translating point mass and 
using , or we can use rotational parameters.  
I’ll show both (assuming the velocity of the mass 
at the bottom of the incline is ):

 

L1,m = !rx!p1

       = d mv1( )   

 
!rx!p  

translating point mass:

L1,m = Imass/pin ω1

       = md2( ) v1

d
⎛
⎝⎜

⎞
⎠⎟

       = md( )v1  

rotational parameters:

Same either way. 

v1 

After the collision, the mass’s 
angular momentum in terms of 
angular velocity: 

 

L2,m = !rx!p2

        = d mv2( )
        = d m dω2( )( ) = md2ω2  

OR

 i

ω1 =
v1
d

d

v1

Imass/pin = md
2

m, d, R, g, and Icm,rod =
5

12
md2
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We need the 
moment of inertia 
of the rod about 
the pin.  We’ll use 
the parallel axis 
theorem for that:

Icm = Icm + Md2

     = 5
12md2 + 5m( ) d

2( )2

     = 5
3

md2   

 i

m

d θ

5m

Putting everything together 
through the collision yields:

 

L1,pin∑ + τextΔt∑ =     L2,pin∑
    !rx!p1,mass        0      =  Imassω2 + Ipinω2

   ⇒    mdv1 = md2( )ω2 +
5
3

md2⎛
⎝⎜

⎞
⎠⎟ ω2

   ⇒    ω2 =
v1

d + 5
3d

= 3v1

8d

m, d, R, g, and Icm,rod =
5

12
md2

ω2 =
v2

d
,  v2 = ω2d = 3v1

8d
⎛
⎝⎜

⎞
⎠⎟ d

As

⇒   v2 =
3
8

v1 =
3
8

2gR
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Knowing the after-collision velocities, we can 
use conservation of energy to determine how high 
the rod’s center of mass rises, and how high up 
the mass rises, before coming to a stop.  Without 
doing the math to its conclusion, assuming the 
time interval is from just after the collision to the
stop point and noting that the mass rises a 
distance                    (you should understand why 
by now) while the rod’s center of mass rises                        
that equation looks like:

 i

m

d θ

5m

m, d, R, g, and Icm,rod =
5

12
md2

        KE1∑                  + U1∑ + Wext∑ = KE2∑ +              U2∑
     KErod     +  KEmass( ) +   0     +     0     =       0     +            Umass       +                Urod           ( )
1
2

Irod/pinω2
2 + 1

2
mv2

2⎛
⎝⎜

⎞
⎠⎟ +   0     +     0     =       0    + mg d − dcosθ( ) + 5m( )g d

2
− d

2
cosθ⎛

⎝⎜
⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

 

d − dcosθ( )
d
2 −
d
2cosθ( ),

Δy = d − dcosθ
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•

Example 6: In 1967 as a graduate student, Jocelyn 
Bell (aca Dame Jocelyn Bell Burnett) observed, in the 
face of scant support from her advisor, Antony Hewish, 
the first pulsar.  In 1974, in a classic “keep ‘em
barefoot and pregnant” move, the all male, presumably 
all white Nobel committee gave Hewish the Nobel 
Prize in Physics for the discovery while ignoring Bell altogether.  With that 
monumental injustice in mind, consider the lowly pulsars:

When a star with a core between 1.4 and 1.8 solar masses dies, it explodes spectac-
ularly in what is called a supernova.  (Example: In 1054, a supernova occurred that 
was observed by the Chinese and was visible during the day for two weeks.)  When 
a supernova happens, the outer part of the star blows outward creating what is called 
a supernova remnant (the supernova in 1054 created the Crab Nebulae) and the core 
is blown inward.  The implosion is so violent that it forces electrons into the nuclei 
of their atoms (removing all the space in the atoms in the process) where they 
combine with the protons there to produce neutrons that stop the implosion by 
literally jamming up against one another.  With all that space removed, the resulting 
structure is incredibly dense (think a thousand Nimitz class aircraft carriers 
compressed into the size of a marble) and small (think 10 to 15 kilometers across).

core implodes
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(con’t) The significance of all of this is that nature provides us with a WICKED 
example of conservation of angular momentum.

How so? There are no external torques acting during the supernova, so angular 
momentum is conserved.  The enormously massive structure spread out over 
hundreds of thousands of kilometers starts out with a HUGE RADIUS and 
angular momentum even though its angular speed is low (the sun takes 25 days to 
rotate once about its axis).  In other words, its angular momentum looks like: 

L = Ibefore ωbefore



ωafter
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After the supernova, the moment of inertial drops precipitously because the radius 
goes from several hundred thousand kilometers to, maybe, 15 kilometers during 
the explosion, BUT THE ANGULAR MOMENTUM STAYS THE SAME which 
means the angular velocity skyrockets.  In other words, the final angular 
momentum relationship will look like:

L = Iafter

In short, pulsars (neutron stars) are super dense structures that rotate anywhere 
from a few cycles per second all the way up the several hundred cycles per 
second, all as a consequence of conservation of angular momentum.
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But what’s really cool is that they put out 
what is called synchronous radiation—
radiation that is very directional and that is 
in the radio frequency range.  So if the 
sweep of radiation of one of these fast 
rotating objects just happens to cross the
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And as a small side-point, I’ve REALLY simplified 
what’s going on with these things.  According to Sterl
Phinney, Professor of Astrophysics at Caltech (and a 
Poly parent), the progenitor of the Crab Nebula lost 
99% of its angular momentum during and since its 
supernova.  More about this on the next slide (if I get 
the time to generate it).

earth’s path, a blast of radio wave will hit the earth 
every time the star completes one rotation.  In 
other words, we can hear them using a radio 
telescope. This is what you will experience on the 
next slide.  Pretty amazing!
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Remembering that these are super dense (density of 1000 Nimitz-class aircraft 
carriers compressed to the size of a marble) stars that are, maybe, 15 km across, 
and that each rotation produces one beat, here is what a pulsar sounds like as 
observed by a radio telescope.  

AMAZING!!!


